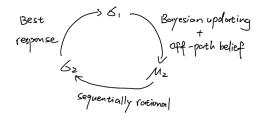
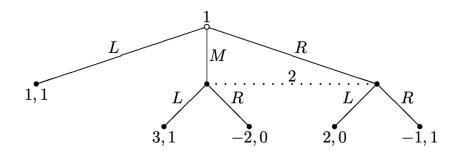
1 Bayesian Extensive Games and the Perfect Bayesian Equilibrium (PBE)

**Definition 1.1.** A Bayesian extensive game with observed actions is a tuple  $\langle N, H, P, (\Theta_i), (p_i), (u_i) \rangle$  where:


- 1. Set of N players, set of histories H, and player function P.
- 2. For each i:
  - (a) A finite set of types  $\Theta_i$ .
  - (b) A probability measure  $p_i$  over  $\Theta_i$ . (Assume independent types and common prior)
  - (c) A preference relation  $\succeq_i$  over  $Z \times \Theta$ .

*Remark.* In solving the game, we often recast the game as an extensive game with imperfect information, which is a tuple  $\langle N, H, P, f_c, (\mathcal{I}_i), (u_i) \rangle$ . We introduce Nature as another player, selecting types at time 0. (It will become clearer in the signaling game)


**Definition 1.2** (Informal). An assessment  $(\sigma, \mu)$  is a **perfect Bayesian equilibrium** if

- 1. Sequentially rational: For each type  $\theta_i$ ,  $\sigma_i$  is the best response given  $\mu_i$  and  $\sigma_{-i}$  at every information set  $I_i$ .
- 2. Bayesian updating whenever possible. (But no restriction on off-path beliefs)
- 3. Action determine beliefs: beliefs on i's type can only be changed by i's action. (True when independent types)

*Remark.* Solving for PBE often proceeds in a "loop":







Find the set of perfect Bayesian Equilibria of the game.