1 Bayesian Extensive Games and the Perfect Bayesian Equilibrium (PBE)

Definition 1.1. A Bayesian extensive game with observed actions is a tuple $\langle N, H, P, (\Theta_i), (p_i), (u_i) \rangle$ where:

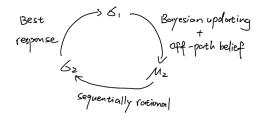
- 1. Set of N players, set of histories H, and player function P.
- 2. For each i:
 - (a) A finite set of types Θ_i .
 - (b) A probability measure p_i over Θ_i . (Assume independent types and common prior)
 - (c) A preference relation \succeq_i over $Z \times \Theta$.

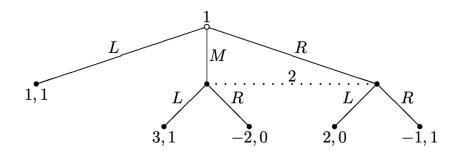
Remark. In solving the game, we often recast the game as an extensive game with imperfect information, which is a tuple $\langle N, H, P, f_c, (\mathcal{I}_i), (u_i) \rangle$. We introduce Nature as another player, selecting types at time 0. (It will become clearer in the signaling game)

Definition 1.2 (Informal). An assessment (σ, μ) is a **perfect Bayesian equilibrium** if

- 1. Sequentially rational: For each type θ_i , σ_i is the best response given μ_i and σ_{-i} at every information set I_i .
- 2. Bayesian updating whenever possible. (But no restriction on off-path beliefs)
- 3. Action determine beliefs: beliefs on i's type can only be changed by i's action. (True when independent types)

Remark. Solving for PBE often proceeds in a "loop":





Find the set of perfect Bayesian Equilibria of the game.