1 Supermodular game

Definition 1.1. $u_i(s_i, s_{-i})$ has (strict) increasing differences in (s_i, s_{-i}) if for all (s_i, \tilde{s}_i) and (s_{-i}, \tilde{s}_{-i}) such that $s_i \geq \tilde{s}_i$ and $s_{-i} \geq \tilde{s}_{-i}$, we have:

$$u_i(s_i, s_{-i}) - u_i(\tilde{s}_i, s_{-i}) \ge u_i(s_i, \tilde{s}_{-i}) - u_i(\tilde{s}_i, \tilde{s}_{-i})$$

Definition 1.2. $u_i(s_i, s_{-i})$ is supermodular in s_i if for each s_{-i} :

 $u_i(s_i, s_{-i}) + u_i(\tilde{s}_i, s_{-i}) \le u_i(s_i \wedge \tilde{s}_i, s_{-i}) + u_i(s_i \vee \tilde{s}_i, s_{-i})$

Remark. Note that if S_i is linearly ordered (as \mathbb{R}), then u_i is trivially supermodular in s_i as the above inequality is vacuously satisfied as equality.

Definition 1.3. A (resp., strictly) supermodular game is a game in which for each *i*:

- S_i is a sublattice of R^{m_i}
- u_i has (resp., strictly) increasing differences in (s_i, s_{-i})
- u_i is (resp., strictly) supermodular in s_i

Remark. If every players' strategy is single-dimensional, the definition of supermodular game boils down to just increasing differences.

Theorem 1.1. Let (S, u) be a supermodular game. Then:

- the set of strategies surviving iterated strict dominance has greatest and least elements $\overline{a}, \underline{a}$.
- and $\overline{a}, \underline{a}$ are both Nash equilibria.

2 Exercise

ECON 6110: 2021 Prelim #1 Question #2

Two students are deciding how long to spend studying for 6110 on the night before the exam. Let e_i be the fraction of the available time student *i* devotes to studying with $0 \le e_i \le 1$. Assume that the students' payoffs are

$$v_1(e_1, e_2) = \log(1 + 3e_1 - e_2) - e_1,$$

 $v_2(e_1, e_2) = \log(1 + 3e_2 - e_1) - e_2.$

Note: Please ignore the two action profiles that render one of the value functions undefined :)

- (a) Show that the game is supermodular.
- (b) Find the set of rationalizable actions.
- (c) Find the Nash equilibria.