1 A few results about mixed strategies

Definition 1.1.

- $N = \{1, \ldots, n\}$: set of players.
- A_i : set of actions of player *i*.
- $A = \prod_{i=1}^{n} A_i$: set of profiles of actions. \times is the Cartesian product of sets. $A \times B$ is the set of all ordered pairs of (a, b) where $a \in A, b \in B$.
- $a = (a_1, \ldots, a_n) \in A$.

Definition 1.2.

- $\alpha_i : A_i \to [0, 1]$ such that $\sum_{a_i} \alpha_i(a_i) = 1$: probability distribution over i's actions. We also call α_i a mixed action.
- $\Delta(A_i)$: set of probability distribution over i's actions. $\alpha_i \in \Delta(A_i)$.
- $\prod_{i=1}^{n} \Delta(A_i)$: set of profiles of mixed actions.
- $\alpha = (\alpha_1, \ldots, \alpha_n) \in \prod_{i=1}^n \Delta(A_i).$

Remark. $\alpha_i(U) = \alpha_i(D) = \frac{1}{2}$, can also write as a shorthand $\alpha_i = \frac{1}{2}U + \frac{1}{2}D$. Remark. $\prod_{i=1}^n \Delta(A_i) \neq \Delta(\prod_{i=1}^n A_i) = \Delta(A)$. *Remark.* In the definition of Nash equilibrium, the domain of the best response correspondence is $\prod_{j \neq i} \Delta(A_j)$. In correlated equilibrium and rationalizable actions, the domain of the belief is $\Delta(A_{-i}) = \Delta(\prod_{j \neq i} A_j)$.

Definition 1.3 (Mixed Nash equilibrium). A mixed Nash equilibrium of a game $\langle N, (A_i), (u_i) \rangle$ is a profile $\alpha^* = (\alpha_1^*, \ldots, \alpha_n^*)$ of mixed actions such that for every $i \in N$:

$$U_i(\alpha_i^*, \alpha_{-i}^*) \ge U_i(\alpha_i, \alpha_{-i}^*)$$

for all $\alpha_i \in \Delta(A_i)$.

Definition 1.4 (Two ways to decompose the utility of mixed actions).

$$U_i(\alpha) = \sum_{a_1,\dots,a_n} u_i(a_1,\dots,a_n) \cdot \alpha_1(a_1) \cdots \alpha_n(a_n)$$
$$= \sum_{a_i} U_i(a_i,\alpha_{-i}) \cdot \alpha_i(a_i)$$

Definition 1.5. $supp(\alpha_i) = \{a_i \in A_i : \alpha_i(a_i) > 0\}.$

Proposition 1.1 (Randomize out of indifference). If $\alpha_i^* = (\alpha_i^*, \alpha_{-i}^*)$ is a Nash equilibrium, then

$$U_i(a_i^*, \alpha_{-i}^*) = U_i(\alpha_i^*, \alpha_{-i}^*)$$

for all $a_i^* \in supp(\alpha_i^*)$.

Proposition 1.2. For every *i* and $\alpha = (\alpha_i, \alpha_{-i})$, the followings are equivalent:

1. For all $\alpha'_i \in \Delta(A_i)$,

$$U_i(\alpha_i, \alpha_{-i}) \ge U_i(\alpha'_i, \alpha_{-i})$$

2. For all $a_i \in supp(\alpha_i)$ and $\alpha'_i \in \Delta(A_i)$,

$$U_i(a_i, \alpha_{-i}) \ge U_i(\alpha'_i, \alpha_{-i})$$

3. For all $a_i \in supp(\alpha_i)$, $a'_i \in A_i$, and $\alpha'_i \in \Delta(A_i)$,

$$U_i(a_i, \alpha_{-i}) \ge U_i(a'_i, \alpha_{-i})$$

2 Exercise

Find all mixed strategy Nash equilibria of the following game.

	L	R
U	8,3	3,1
M	7, 5	4, 4
D	$ \begin{array}{c} L \\ 8,3 \\ 7,5 \\ 3,3 \end{array} $	7,5