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Vignettes

Consider an algorithm-aided lending decision. The algorithm takes in the
features of a loan applicant (e.g. race, age, income, past credit history)
and recommends a repayment probability to the loan manager. The loan
manager receives the recommendation, also observes some features of the
applicant, and then makes a decision (accept/reject; interest rate).

Racial bias
Suppose that we learn from the loan manager’s past decisions that he is
unjustifiably lenient to the applicants of his own racial group.

Cognitive bias
As most humans, a loan manager systematically overweighs small
probabilities of default and makes lending decisions that are too
conservative for the bank to maximize its profit.
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Motivation

Data → Algorithm → Recommendation → Human DM → Decision
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Motivation

Data → Algorithm → Recommendation → Human DM → Decision

Until recently, the majority of ML literature is only concerned with
things in this dashed box.
What matters to the society more is the quality and fairness of final
decisions.
In this structure, can the algorithm have control over final decisions
with recommendations alone?
Can the algorithm learn about the human DM and adjust its
recommendations accordingly?



5

Related Literature

Literature on human-machine complementarity focuses on designing
optimal rules to combine the independent decisions of the algorithm and
the human into a joint decision (Rastogi et al. 2022, Donahue et al. 2022).

Our work differs from this literature in two ways.
Human remains the (only) final decision maker in the system while
the algorithm merely acts as an “advisor.”
“Different information” versus “different objectives.”
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Contribution and Limitations

We provide a formal model of the interaction between decision-aid
algorithms and human DMs...
...in a noiseless setting where the algorithm knows the ideal decision
for each case, the human DM has no private information, and the
algorithm recommends a continuous-valued recommendation.
Our results can be interpreted as the “fundamental limit” of
controllability and identifiability and serves as a benchmark.
Question for the audience: which extensions are feasible and
economically important? In extended scenarios, what should the
algorithm do?
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Problem Setting

Individual, algorithm, judge.
For each individual i, the algorithm observes high-dimensional features
xi ∈ X ⊂ RD.
The judge can only process (or access) a subset of these features
denoted by x′i = A(xi). We call A : X → {0, 1}D ⊙X the “attention
function,” where ⊙ denotes entry-wise multiplication.
The ideal decision for individual i is mi = f(xi). We assume that this
is known to the algorithm.
After observing features xi, the algorithm makes a recommendation ni
to the judge.
The judge makes a final decision yi according to the decision rule
yi = g(ni, x′i).
WLOG we normalize n, m, y to be in [0, 1].
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Informational Structure

The algorithm knows everything that the judge knows: A, x′i. In
addition, the algorithm knows xi, f, and thus mi.
When the algorithm knows judge’s decision rule g(ni, x′i)
→ controllability under perfect information.
When the algorithm does not know judge’s decision rule g(ni, x′i)
→ identifiability of g from data.
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Linear in log odds model

Linear in log odds (LLO) is a well-known model in behavioral economics to
capture people’s non-linear perception of probabilities.
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Algorithmic recommendations can be viewed as a probability in many
scenarios. Therefore, it is reasonable to assume that the judge’s decision
function is LLO in the recommendation n.
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Linear in log odds model

Figure: Left panel: Distortion of probabilities. Right panel: Biases based on group
membership.
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Controllability

Definition (Full control)
The algorithm attains full control of the judge at x ∈ X if there exists an
n ∈ [0, 1] such that g(n,A(x)) = f(x).

Figure: Full control with full range. Failing to control. Full control with limited range.



12

Parameter Identification

Question
If the judge’s decision function is unknown but takes a parametric form
with parameters β ∈ RD′ , γ ∈ R and the form of h known:

g(n, x′) = h(β⊤x′, γ, n)

Can we identify β and γ from the dataset of past interactions:

{xi, x′i, ni, yi}N
i=1 where yi = h(β⊤x′i, γ, ni)

Answer
Yes! As long as two general conditions are satisfied:
Rank condition: rank(X) = D, standard assumption in linear regression.
Independence condition: Need independent variation in x′i and n. (If we
observe two individuals with x′i = x′j but ni ̸= nj, this is satisfied.)
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A Strategic Judge

A strategic judge is able to adapt his decision rule to best respond to the
algorithm.

As before, xi, x′i, and mi, the “true state.”
The algorithm has a utility function UA(y,m) = −(y − m)2, i.e., the
algorithm wants the decision to be close to the true state.
The judge has a utility function UJ(y,m, b) = −(y − gb(m))2, i.e., the
judge wants the decision to be close to his “ideal decision function”
gb(m) if the true state is m.
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A Strategic Judge

When b = 0, gb(m) is the identity line (= the ideal decision function of
the algorithm). When b > 0, gb(m) shifts away from the identity line.
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The Sequential Game

We first consider a sequential game where the algorithm and the judge
take turns to react.

1 T = 1, the algorithm is constrained to behave “truthfully,” i.e.,
n = m, while the judge best responds according to his utility.

2 T = 2, the judge’s decision rule is fixed as in T = 1 and the algorithm
changes its recommendation rule in best response.

3 T = 3, the algorithm’s recommendation rule is fixed as in T = 2 and
the judge changes his decision rule in best response.

4 ...so on and so forth.
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The Sequential Game

At T = 1, the algorithm is mandated to provide the true state of the
world. The judge’s best response is simply y = gb(n).
At T = 2, the algorithm learns about the decision rule of the judge in the
first period and best responds by choosing n = g−1

b (m). Since under this
recommendation, the final decision of the judge at T = 2 is

y = gb(n) = gb(g−1
b (m)) = m

At T = 3, the algorithm’s recommendation rule is fixed at n = g−1
b (m).

This function is invertible, so the judge deduces that m = gb(n).
Therefore, the judge’s decision function is

y = gb(m) = gb(gb(n)) = g2
b(n)

Note that g2
b is a more distorted curve, i.e., further away from the identity

line.



17

The Sequential Game
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The Simultaneous Game

At the limit, more like a simultaneous game where each player anticipates
the other player’s strategy and best responds in the same period. We call
this an equilibrium.

One insight we can glean from the sequential game is that the algorithm
should not choose a one-to-one correspondence between m and n in
equilibrium. Otherwise, the judge can perfectly back out the true state of
the world and achieve his first-best.

Indeed, with reference to the classical cheap talk game in Crawford &
Sobel (1982), we show that all equilibria in our game are “partition
equilibria,” where the algorithm makes the same recommendation for an
interval of true states.
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The Simultaneous Game

Figure: Illustrations of a partition equilibrium with four intervals. The algorithm sends the same
recommendation for the states of the world in the same partition interval, and the judge chooses
the decision that maximizes the expected utility knowing that the true state falls into this
interval.

The algorithm says “the true state is between a1 and a2” even if it knows
exactly where the true state is.

Wait, isn’t this what algorithms have been doing in real-life...?
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Discussion and Extensions

We characterize the fundamental limits of algorithmic influence in
decision-aid systems.
The interpretation of these results can be two-fold.
(+) Correct human bias and help better decision making.
(−) “Accountability laundering.” It is fairly easy for an algorithm to
go from a decision-aid to a controller. If the algorithm is secretly used
for such purposes, the human judges are held accountable for their
decisions, while the goals of the algorithm’s designer are realized.
When viewed in this light, our results help to understand the extent
to which we should worry about such misuses of algorithms.
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