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Abstract

We often learn from multiple sources that convey information in different ways. How in-
formative is it to know the source of a signal, and how is this informativeness shaped by the
distribution of sources? We extend the standard (binary-state, binary-signal) Blackwell experi-
ment model by introducing a commonly known distribution over signaling schemes, representing
the distribution of information sources. We compare learning under two information models:
source-aware, where decision makers observe a signaling scheme and its realization (e.g., raw
reviews, search results), and source-blind, where only the signal realization is observed (e.g.,
aggregate ratings, generated summaries). We show that a mean-preserving spread in the dis-
tribution of signaling schemes translates into Blackwell dominance for source-aware decision
makers, implying they are “risk-loving” in information sources. In contrast, it has no impact on
source-blind decision makers. When learning from repeated draws of signaling schemes, source-
blind decision makers learn more slowly. However, as long as the average signaling scheme
is ε away from being completely uninformative, source-blind learning can match source-aware
learning by using at most O(1/ε) times more data.
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1 Introduction

In economic decision-making, individuals and institutions routinely rely on information from diverse
sources. Whether a piece of information—such as a product review, a news article, or a medical
recommendation—is informative depends not only on its content but critically on who produces
it. A satirical news report, for instance, invites different interpretations compared to a reputable
news outlet; medical advice from a layperson lacks the authority of a licensed professional; and the
relevance of a restaurant review hinges on how the tastes of the reviewer and the reader compare. In
these examples, knowing the source of a piece of information can be critical to evaluate its content
and to inform decision making.

On the other hand, modern technology offers unprecedented opportunities for summarization
and processing large amounts of data at low costs. While aggregating information opens up the
possibility of harnessing large datasets, the source of each data point—reflecting its reliability, bias,
or relevance—is often obscured in the process. In the age of big data, the common wisdom is that
this loss of context can be overcome with ever-increasing amounts of data. This raises fundamental
questions about the role of data provenance in learning. How is informativeness shaped by the
distribution of sources? How does the value of knowing a signal’s source compare with the ability
to process more samples?

Our paper proposes a framework for answering these questions. There is an unknown decision-
relevant state of the world. A signaling scheme is a Blackwell experiment that maps the state to
a probability distribution over finite signal realizations. We assume access to a commonly known
distribution over signaling schemes, representing heterogeneity in information sources. We consider
a learner who can observe multiple signal realizations, each generated by a separate signaling scheme
independently drawn from this distribution. We compare two learning environments, representing
different amounts of information available to the learner. In the source-aware setting, the learner
observes the details of the signal-generating processes (e.g., reading raw reviews or examining the
origin of search results) in addition to the realizations of the signals from those sources. In the
source-blind setting, only the signal realizations are observed by the learner (e.g., seeing aggregated
ratings or summary statistics) while the nature of the signal-generating processes is obscured. We
can ask our main question in the language of the model:

How many more samples does a source-blind learner require to be as informed—and
hence as effective at decision-making—as a source-aware learner?

As an initial foray into answering this question, we instantiate our framework in a simple
binary setting. There is a state of the world θ ∈ {0, 1}, initially unknown to the learner. Each
potential signaling scheme generates a binary signal that can be correlated with θ. We assume “no
fake data,” meaning that no signal realization is negatively correlated with the state, but we do
allow perfectly uninformative signals that are not correlated with θ. While restrictive, this binary
scenario is nevertheless sufficiently rich to illustrate the gap between source-blind and source-aware
learning, while also capturing natural scenarios in which a decision-maker must select whether or
not to take an action (such as purchasing a product) given a dataset that takes the form of action
recommendations.

In our main result, we give an upper bound on the advantage of being source-aware when
learning from many different sources drawn from the distribution. We prove that if the average
of all signaling schemes is at least an ε-distance (in an appropriate metric) from being completely
uninformative, then a source-blind learner needs no more than O(1/ε) times as much data to be
at least as informed as a source-aware learner in the sense of Blackwell dominance. This means,
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in particular, that for any decision problem that depends on the state θ, a source-aware decision
maker will be outperformed (in expectation) by a source-blind decision maker with access to O(1/ε)
times as many signals.

Our bound depends on the informativeness of an average signaling scheme with respect to the
distribution from which they are drawn. To see why, imagine a distribution in which a very small
fraction of signals are fully informative of the state, while the rest are completely uninformative.
A source-aware learner would then learn the state perfectly if even a single informative signal is
observed, whereas for a source-blind learner a single informative signal is likely to become lost in
the noise. However, if sufficiently many informative signals are present in the dataset, then the
state could be inferred even from aggregate statistics. Our analysis essentially shows that this type
of example is the worst-case scenario for a source-blind learner, and the resulting bound applies to
all potential distributions over data sources.

Along the way to establishing our main result, we analyze how changes in the underlying
distribution over signal-generating processes affect the rate at which a source-aware or source-
blind decision maker becomes informed. We show that as the distribution over signal-generating
processes becomes “more spread out,” in the sense of a mean-preserving spread, a source-aware
decision maker becomes strictly more informed in the sense of Blackwell informativeness. Again,
this implies that the source-aware decision-maker gets weakly higher expected utility, under any
decision problem, when learning from more heterogeneous data sources. In contrast, we show
that the source-blind decision maker cares only about the mean signal, and hence her level of
informativeness is unchanged when the source become more spread out in the same sense as above.
These results, which may be of independent interest, apply to any finite signal and state space (not
necessarily binary).

Related Work. There is a vast literature on learning from signaling schemes, i.e., Blackwell
experiments [Blackwell et al., 1951, Blackwell, 1953]. This literature considers a host of important
topics and results, including (but not limited to) how different information experiments can feasibly
correlate [e.g., Brooks et al., 2022, 2024], how agents learn in social environments [e.g., Banerjee,
1992, Huang, 2024], how costs can be assigned to experiments [e.g., Pomatto et al., 2023, Bloedel
and Zhong, 2020], and how experiments can be ranked [e.g., Moscarini and Smith, 2002, Azrieli,
2014, Kosenko, 2024]. Our main result in Section 7.1 relies on a related concept from Mu et al.
[2021], the dominance ratio, which gives a quantitative comparison between two experiments based
on the information content of many repeated independent samples from the experiments.

There is relatively little work that, like our model, considers learning in a distribution over
signaling schemes. Acemoglu et al. [2016] consider agents with different subjective priors over sig-
naling schemes. They consider how agents learn from repeated signal realizations generated by a
single signaling scheme drawn once from their prior. In contrast, our main result in Section 7.1 con-
sider learning from many repeatedly-drawn signaling schemes from a commonly-known distribution
of such schemes, so there is no learning about signal-generating processes overtime. Cripps et al.
[2008] considers agents that learn from correlated signals and studies conditions under which joint
learning occurs and is common knowledge. In our scenario, a source-aware learner has only more
information than the source-blind learner, and hence joint learning is assured at the rate at which
the source-blind agent learns; our focus is on comparing the rates at which they learn. Our result
in Theorem 5.1 concerning the mean-preserving spread of signaling schemes generalizes a part of a
result in Whitmeyer [2024], which finds that a Bayesian decision maker weakly prefers randomiza-
tion over two experiments to their convex combination. They define this as “convexity,” and show
that Bayes’ rule is the only updating rule satisfying convexity and certain other requirements.
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Beyond the context of learning, recent works on communication games have incorporated am-
biguity into signaling schemes, similar to how we introduce heterogeneous signaling schemes. In
ambiguous persuasion [Beauchêne et al., 2019, Cheng, 2023, Cheng et al., 2024], the sender is al-
lowed to use ambiguous communication devices comprising a finite set of signaling schemes, while
the receiver is assumed to be ambiguity-averse and to maximize their maxmin expected utility.
Similarly, Kellner and Le Quement [2017] studies cheap talk communication with purely exogenous
ambiguity and Kellner and Le Quement [2018] studies when sender can strategically choose to
communicate ambiguously.

Other papers study conceptually similar questions to ours in different settings. Motivated by
investigating the “value of context,” Iakovlev and Liang [2024] ask whether an agent prefers to be
evaluated by a human who observes a smaller but customized set of covariates, or an algorithm
which observes a bigger set of non-customizable covariates. They find that the expected value of
customization vanishes to zero as the number of covariates grows. In a more classic setting, several
papers have considered the value of context when learning from signals generated by individuals
connected in a social network. For example, if individuals receive binary signals about an unknown
state of the world and repeatedly report their best guess of this state to their neighbors, the
“context” (i.e., the structure of the network) impacts whether the society can learn the state. If
individuals are Bayesian and correctly incorporate the context in their updating process, learning
will be asymptotically efficient for a wide range of dynamics Gale and Kariv [2003], Mossel et al.
[2015, 2016]. However, if individuals simply update using a majority dynamic, then the society
might fail to learn the state, and multiple beliefs might persist indefinitely unless the social network
and dynamics satisfy certain properties Feldman et al. [2014], Mossel et al. [2014]. Another domain
related to the value of context is the problem of learning mixture models, whereby data is known
to be generated from multiple sources but the source label (i.e., context) is hidden. Depending on
the underlying data distribution from each individual source, learning the mixture model may be
substantially more difficult than if the source labels were revealed Dasgupta [1999], Dasgupta et al.
[2005].

Our main result, Theorem 7.3, shows that if the average signal is not too uninformative, then
for any decision problem, a source-blind learner with access to only O(1/ϵ) times more signals
will outperform a source-aware learner. This has a similar flavor to Bulow and Klemperer [1994]’s
seminal result that in independent private value auctions, an auctioneer can generate more profit
by adding one more bidder than by switching to the optimal auction mechanism. Similarly, the
seminal paper in algorithmic game theory, Roughgarden and Tardos [2002], shows that a network
suffers less total latency with Nash routing and twice the edge capacity than that of the optimal
routing. As such, our result joins the common refrain in the Economics and Computation literature
that the optimal mechanism can often be bested by a simple mechanism plus a bit more resources.

Paper Organization. The rest of the paper proceeds as follows. We define our model of source-
aware and source-blind learning in Section 2. We give background on the main concept needed to
express our results—the Blackwell order—in Section 3, and makes basic observations comparing
source-aware and -blind learning in Section 4. We study source-aware learners in Section 5, and
prove they are “risk-loving” in information sources. Section 6 introduces a tractable special-case
of our general model: that of binary states and signals under a “no-fake-data” assumption. In
Section 7, we consider this special case and give our main result, which bounds the advantage of
knowing the source when learning from many sources. Section 8 concludes.
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2 Model and Preliminaries

2.1 Signaling Schemes

Let Θ = {0, 1, . . . , k − 1} be a finite set of k ≥ 2 states. For concreteness, we assume that the
decision maker initially has a uniform prior belief over Θ; since our results all concern Blackwell
dominance and other prior-free notions, standard arguments imply that our results hold for any
other fixed prior.

A signaling scheme is a function π : Θ → ∆(Ω) for some finite realization space Ω. We refer
to an ω ∈ Ω as a signal realization. We can equivalently view a signaling scheme π as a set of
probability measures (P π

θ )θ∈Θ over Ω, where P π
θ is the measure of signals realized when the state

is θ. We use pπθω = π(ω | θ) for ω ∈ Ω and θ ∈ Θ to denote the specific entries in the probability
measure P π

θ .
1 Whenever it is clear which signaling scheme we refer to, we may omit the superscript

and write Pθ and pθω. We let P denote the set of feasible signaling schemes, which we refer to as
the domain.

Given a signaling scheme π, let τπ ∈ ∆(∆(Θ)) denote the distribution over posterior beliefs
which arises from the signaling scheme π. Since |Θ| = k, we typically represent τπ as an element
of ∆(Sk), where Sk = {(q0, . . . , qk−1) ∈ [0, 1]k |

∑k−1
i=0 qi = 1} denotes the k-simplex and the event

τπ = (q0, . . . , qk−1) represents the posterior belief that the state is i with probability qi.
For an concrete example of a signaling scheme and the induced distribution of posterior beliefs,

we refer the reader to Section 6 for a discussion under binary state and signal spaces.

2.2 Learning and Information Models

We focus on a decision maker who wishes to learn about the state θ ∈ Θ from one or more
signal realizations. Informally, these are realized according to signal processes that are themselves
repeatedly drawn from a distribution Π over the domain of signaling schemes P, i.e., Π ∈ ∆(P). The
standard Blackwell experiment framework with a single signaling scheme π ∈ P thus corresponds
to the distribution Π which is a single point mass at π.

We compare learning under two information models: source-aware and source-blind learning.
First, we introduce source-aware learning. Intuitively, we say a decision maker is source-aware

if she learns how a piece of information is generated, together with the content of the information.
This learning regime may represent environments where one reads raw reviews on a platform or
read sources from a search engine.

Formally, we define the source-aware model as follows. Nature draws (i) a state θ ∈ Θ according
to the uniform prior, (ii) a signal scheme π ∼ Π, and (iii) a signal realization ω ∼ P π

θ . The decision
maker learns the tuple (π, ω), i.e., the signal scheme and a realization from it. This process is
equivalently a single signal scheme with an enriched signal space P × Ω. Note that the draw of π
from the distribution Π is independent of the state—only the realization ω is state-dependent. We
denote this signaling scheme by A(Π) where A is a mnemonic for “aware.”

Second, we introduce source-blind learning. Intuitively, we say the decision maker is source-blind
if she sees a piece of information without learning its source. This learning regime may represent
environments where one reads aggregated ratings or generated summaries where information about
sources are often suppressed.

Formally, in source-blind learning, nature draws a random θ, π, and ω exactly as before, but the

1The standard notation π(ω | θ) represents P [π(θ) = ω], the probability of observing signal realization ω given
that the state is θ. Additionally, when no confusion can arise, we write a distribution (e.g., π(θ) or τ) with the same
notation as a random variable following that distribution (e.g., we consider events π(θ) = ω or τ = q).
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decision maker only sees ω and not π. Thus, this constitutes its own signaling scheme with signal
space Ω. We refer to this signaling scheme as B(Π) where B is a mnemonic for “blind.”

3 Background: The Blackwell Order

We are interested in how useful different signaling schemes are to decision makers. To that end, in
this section we review a classic tool for comparing different information sources.

The canonical way to capture and compare the usefulness of signaling schemes is via the Black-
well informativeness ordering [Blackwell, 1953], which is a partial order ⪰ over signaling schemes
such that P ⪰ Q if and only if every decision maker prefers P over Q. We use several classi-
cal equivalent definitions for the Blackwell order, particularly using the concepts of garblings of
signaling schemes and mean-preserving spreads of posterior distributions.

Definition 3.1 (Garblings of signaling schemes). Let P : Θ → ∆(Ω) and Q : Θ → ∆(Ξ) be
two signaling schemes with state space Θ and realization spaces Ω and Ξ. We say that a garbling
function from P to Q is a function T : Ω → ∆(Ξ) such that for all θ ∈ Θ, if we sample ω ∼ P (θ)
and ξg ∼ g(ω), then ξg is equal in distribution to Q(θ). We say Q is a garbling of P if there exists
a garbling function from P to Q.

Definition 3.2 (Mean-preserving spread in Rm). For random variables X1 and X2 in ∆(Rm), we
say that a spread function from X1 to X2 is a function s : Rm → ∆(Rm) such that:

(1) For all t in the support of X1, we have E [s(t)] = t.

(2) If we draw z ∼ X1 and then y ∼ s(z), then y is equal in distribution to X2.

We say X2 is a mean-preserving spread of X1 if there exists a spread function from X1 to X2.
2

Formally, the equivalences we use can now be states as follows.

Theorem 3.3 (Blackwell [1953]). Let P : Θ → ∆(Ω) and Q : Θ → ∆(Ξ) be two signaling schemes
with state space Θ and realization spaces Ω and Ξ. The following statements are equivalent:

(i) For every decision problem with state space Θ, any Bayesian decision maker can achieve
weakly higher expected utility under P than under Q.3

(ii) Q is a garbling of P .

(iii) The posterior distribution τP is a mean-preserving spread of τQ.

In this case, we say that P Blackwell dominates Q, denoted by P ⪰ Q.

2Equivalently, X2 is a mean-preserving spread of X1 if there exists a random variable Z such that for all x1 ∈
supp(X1), we have (1) E [Z | X1 = x1], and (2) X1 + Z is equal in distribution to X2. Note that we define mean-
preserving spreads over the slightly more-general space of Rm, and not just the space of posterior distributions (as
is needed to state Theorem 3.3); this generality will be useful in Section 5 when we discuss mean-preserving spreads
over the space of signaling schemes P.

3Formally, a decision problem specifies a prior over Θ, a set of actions A, and a utility function u : Θ× A → R.
Under the signaling scheme P , the model is as follows. Nature draws the state θ, the decision maker sees a signal
realization drawn from P (θ), and then takes an action that maximizes her utility based on the signal realization she
receives.
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3.1 The Dominance Ratio

A Blackwell ordering relation P ⪰ Q captures a canonical and strong notion of P being more
informative than Q; however, it remains an ordinal ranking. In other words, the Blackwell order
can tell us which signaling scheme is better, but cannot tell us by how much.

To address the above, a line of work has considered quantitative comparisons between signaling
schemes P,Q when learning from a large number of repeated independent samples from P (θ) vs.
Q(θ). We follow the approach given by the dominance ratio in Mu et al. [2021].4 The dominance
ratio bounds the comparative number of samples from one signaling scheme needed to Blackwell
dominate another signaling scheme. For example, if observing 25 independent samples from a
signaling scheme P is Blackwell more informative than 100 independent samples from a signaling
scheme Q, then intuitively, we say P is (at least) 4 times as informative as Q for large enough
samples, and the dominance ratio is (at least) 4. This notion is formalized as follows.

Definition 3.4 (Mu et al. [2021]). The dominance ratio of two signaling schemes P and Q is
defined as:

P/Q = sup
{m
n

: P⊗n ⪰ Q⊗m
}

where P⊗n denote the n-fold signaling scheme where n independent observations are generated
according to the signaling scheme P .

Intuitively, a dominance ratio of r suggests that P will be at least r times as informative as
Q in large samples. We use the characterization from Mu et al. [2021] of the dominance ratio in
terms of the statistical notion of Rényi divergences.

Definition 3.5 (Rényi [1961]). Given a signaling scheme P with binary state space Θ = {0, 1},
signal space Ω and probability measures P0 and P1. The Rényi t-divergence of P under θ is

Rθ
P (t) = Rt(Pθ ∥ P1−θ) =

1

t− 1
log

(∫
Ω

(
dPθ

dP1−θ
(ω)

)t−1

dPθ

)

When t = 1, it is the Kullback-Leibler divergence.

Rθ
P (1) = R1(Pθ ∥ P1−θ) =

∫
Ω
log

(
dPθ

dP1−θ
(ω)

)
dPθ

Theorem 3.6 (Mu et al. [2021]). Under binary states Θ = {0, 1}, we have

P/Q = inf
θ∈{0,1},t>0

Rθ
P (t)

Rθ
Q(t)

4The main result of Mu et al. [2021] characterizes the large sample ordering of signaling schemes, which P
dominating Q in large samples means that there is an n large enough so that n repeated draws from P Blackwell
dominates n repeated draws from Q. This ordering was first introduces by Azrieli [2014] as a refinement of the
ordering proposed by Moscarini and Smith [2002] (where the above n is allowed to depend on the particular decision
problem). Mu et al. [2021] prove Theorem 3.6 as a corrolary of their main characterization. In addition to providing
a quantification of the advantage of a signal over another, this notion is able to compare all pairs of signaling schemes,
and not only those that are Blackwell ranked.
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4 Source-Aware and Source-Blind Learning: Preliminaries

We now return to our model of learning from a mixture of information sources, both with and
without the knowledge of the source, and provide some preliminary analysis.

To begin our analysis, we consider the source-blind signaling scheme. While one may worry
that a source-blind decision maker may need to think in a sophisticated way about the distribution
of signaling schemes, it turns out that there is a simple way to view source-blind learning. Namely,
the blind signaling scheme B(Π) exactly corresponds to the average of all signaling schemes in Π,
where the average is calculated by treating π as an element of R|Θ|×|Ω|, given by (pθω)θ∈Θ,ω∈Ω.

Proposition 4.1. For any distribution of signaling schemes Π ∈ ∆(P), we have that B(Π) is
equivalent to the “mean signal” π = E [Π].

Proof. Observe that the distribution of signal realizations under B(Π) exactly equals the distribu-
tion of signal realizations under π for each state. Formally, in state θ, signal realization ω occurs
under B(Π) with probability exactly Eπ∼Π [pπθω] = pπθω.

Next, we show that for a given Π, source-aware decision makers always learn more information
than source-blind ones. This holds because the source-aware decision maker has the option to
simply ignore the source. Formally:

Proposition 4.2. For any distribution of signaling schemes Π ∈ ∆(P), we have A(Π) ⪰ B(Π).

Proof. Recall that A(Π) is a signaling scheme over P ×Ω, and B(Π) is a signaling scheme over Ω.
Consider the function γ : P ×Ω → ∆(Ω) such that γ(π, ω) = ω. It holds directly by the definitions
that γ is a garbling from A(Π) to B(Π), as defined in Theorem 3.3, and hence A(Π) Blackwell
dominates B(Π).

We end this section by introducing some notation. In our analysis, it is sometimes useful
to consider the distribution of Π conditional on a given posterior q ∈ Sk resulting from A(Π).
We denote this by Π|q. In other words, Π|q denotes a source-aware decision maker’s posterior
distribution over Π, conditional on having received a signal realization such that their posterior
distribution over Θ is q.

Section 6.1 provides an example illustrating Proposition 4.1 and Proposition 4.2 in the binary
state and signal setting. Under this setting, we also provide a visualization for the distribution Π|q
in Figure 4.

5 Source-Aware Learners Are Risk-loving in Information

In this section we derive a result about how source-aware decision makers compare different signaling
scheme distributions. We show that source-aware decision makers always prefer “more spread out”
distributions over signaling schemes. This is formalized with the standard notion of a mean-
preserving spread in the space of distributions over P, where P is treated as a subset of multi-
dimensional Euclidean space, via precisely the same definition as in Section 3. This will hold due
to much the same intuition as in Proposition 4.1: a source-aware learner will always prefer “more
spread out” signaling schemes in the same way that a learner would rather be source-aware, instead
of learning based on only the mean of the distribution of signaling schemes, i.e., being source-blind.

The main result of this section is the following.

Theorem 5.1. For Πs,Π ∈ ∆(P), suppose Πs is a mean-preserving spread of Π, as in Defini-
tion 3.2. Then, A(Πs) Blackwell dominates A(Π).
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Proof. Let Πs be a mean preserving spread of Π, and let s : Rm → ∆(Rm) be the spread function
in the space of signaling schemes as in Definition 3.2. Recall that this means that (1) for all
π ∈ supp(Π), we have E [s(π)] = π, and (2) if we sample π ∼ Π and then πs ∼ s(π), then πs is
equal in distribution to Πs. By the equivalences in Theorem 3.3, it suffices to show that τA(Πs) is
also a mean-preserving spread of τA(Π), in the space of posteriors Sk (where recall that Sk denotes
the k-simplex). We use s(·) to construct a spread function in the posterior space t : Sk → ∆(Sk)
from τA(Π) to τA(Πs).

Fix a certain π, consider s(π), which is itself a distribution over signaling schemes. Observe
that for all π in the support of Π, we have that A(s(π)) Blackwell dominates π, by the same logic
we used to establish that A(Π) always Blackwell dominates B(Π) in Proposition 4.2.5 By the
equivalences in Theorem 3.3, τA(s(π)) is a mean-preserving spread of τπ. Thus, there is a spread
function tπ : Sk → ∆(Sk) from τπ to τA(s(π)). Now, for any posterior q ∈ supp(τA(Π)) ⊆ Sk, define
t(q) as follows: First, draw π from Π|q; Second, draw qs from tπ(q); Finally t(q) is the distribution
of qs that arises from the above process.6 We will show that t(·) is a valid mean-preserving spread
by showing: (1) it is mean-preserving at each point; and (2) the distribution after the spread equals
the distribution τA(Πs).

(1) To see that E [t(q)] = q for each q, we use the law of iterated expectation, and observe
that for all π in the support of Π|q, we know tπ(q) is (by the definition of a spread function) a
distribution with mean q. Therefore we can write:

E [t(q)] = E
qs∼tπ(q)
π∼Π|q

[
qs
]
= E

π∼Π|q

[
E

qs∼tπ(q)

[
qs|π

]]
= E

π∼Π|q

[
q
]
= q

(2) Now we must show that if qs is distributed by drawing q from τA(Π) and then qs from t(q),
then qs is equal in distribution to τA(Πs). To see this, observe that by the definition of t(q), this is
equivalent to: First, draw q from τA(Π); Second, draw π from Π|q; Third, draw qs from tπ(q). In
this process, π is distributed according to Π. Additionally, since tπ is a spread function from τπ
to τA(s(π)), we know that for any fixed π, the distribution of qs conditioned on this π equals the
distribution of τA(s(π)). Since s is a spread function from Π to Πs as in Definition 3.2, this means
that if we draw π ∼ Π and then πs ∼ s(π), then πs is equal in distribution to Πs. Therefore, the
overall distribution of qs follows τA(Πs), as desired. This finishes the proof.

6 A Special Case: Binary States and Signals

All of our results to this point have applied to a general framework with finitely many states and
signal realizations. We now instantiate this general framework in the special case with binary
states and binary signaling schemes. I.e., suppose we have Θ = {0, 1} and Ω = {0, 1}. In this case,
we denote a signaling scheme π as (p00, p11), where p00 and p11 are the probability of the signal
realization matching the state when the state is 0 and 1, respectively. Table 6 illustrates such a
signaling scheme.

We often further restrict attention to the domain of signaling schemes such that signal realization
0 (resp., 1) is always evidence that the state is 0 (resp., 1). Formally, we denote the domain as

5The crucial reliance of this step on Proposition 4.1 illustrates why mean-preserving spread over P are useful.
It also shows that our parametrization of the space of signaling schemes P, and its notion of averages, may be the
“correct” way to represent learning from a mixture of information sources.

6Note that when π is drawn from Π|q, posterior τπ must include q in the support and tπ must include q in its
domain. That’s why we can always evaluate tπ(q).
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P = {(p00, p11) | p00 + p11 ≥ 1}.7 We interpret this to mean that there is “no fake data.” Hence,
we call this restriction the two-signal, no-fake-data setting. This domain of signaling schemes is
illustrated in Figure 1.

Given a signaling scheme π, recall that τπ ∈ ∆(∆(Θ)) denotes the distribution over posterior
beliefs which arises from the signaling scheme π. Since we consider binary states, we typically
represent τπ as an element of ∆([0, 1]), where the event τπ = q represents the posterior belief that
the state is 1 with probability q. By Bayes theorem, the decision maker with a uniform prior who
knows π and observes ω forms the posterior p1ω/(p0ω + p1ω).

Signal space Ω
0 1

State space
Θ

0 p00
p01

= 1− p00

1
p10

= 1− p11
p11

Table 1: Binary signaling scheme specified by
(p00, p11)

p00

p11

0 1

1

Figure 1: Two-signal, “no fake data” domain

Table 2 shows an example of a (no-fake-data) binary signaling scheme πz with p00 = 1/4 and
p11 = 7/8. The top mini-figure in Figure 2 illustrates of the prior: with probability (abbreviated
“w.p.”) equal to 1, the decision maker begins with the belief that the state is 1 with probability
equal to 1/2 (with this belief represented as the horizontal axis). The bottom mini-figure illustrates
the distribution of posteriors the decision maker will have after observing a signal realization from
πz: when the realization is 0 (which occurs w.p. 3/16), her posterior is 3/16; when the realization
is 1 (which occurs w.p. 13/16), her posterior is 7/13.

Signal space Ω
0 1

State space
Θ

0 1/4 3/4
1 1/8 7/8

Table 2: Binary signaling scheme specified by
(1/4, 7/8)

1/2

w.p. 1

7/13

w.p. 3/16

1/3

w.p. 13/16

Figure 2: Illustration of the prior, and of the dis-
tribution of posteriors generated by the signaling
scheme in Table 2

7A straightforward application of Bayes rule show that a signaling scheme π increases the posterior belief that
the state is 1 when the signal realization is 1 if and only if π = (p00, p11) has p00 + p11 ≥ 1
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6.1 Source-Aware and Source-Blind Learning in Binary Settings

We next present an example illustrating Proposition 4.1 and Proposition 4.2 in the context of the
binary setting. Consider the case of binary signals under the “no fake data” assumption, where
we represent signaling scheme as the pair (p00, p11), and let Π be a uniform distribution over
{(1, 0), (0, 1), (1, 1)}. Proposition 4.1 says that B(Π) is equivalent to the single signaling scheme
(2/3, 2/3); hence, τB(Π) is the uniform distribution on the posteriors {1/3, 2/3}. On the other hand,
A(Π) is equivalent to the signalling scheme that reveals the state with probability 1/3 (and hence
yielding posterior 0 or 1 with total probability 1/6 each), and is completely uninformative with
probability 2/3. Proposition 4.2 says that A(Π) ⪰ B(Π). Thus, τA(Π) is a mean-preserving spread
of τB(Π); to see this directly from the distribution of posteriors, consider the random variable Z
such that:

P
[
Z = 0 | τB(Π) = 1/3

]
= 1/3 P

[
Z = 1/2 | τB(Π) = 2/3

]
= 2/3

P
[
Z = 1/2 | τB(Π) = 1/3

]
= 2/3 P

[
Z = 1 | τB(Π) = 2/3

]
= 1/3.

Then, one can check that Z satisfies the conditions of witnessing a mean-preserving spread as in
Theorem 3.3. Figure 3 illustrates this example of B(Π) and A(Π).

Posterior Distribution over Signal Sources: The Binary Case The binary model likewise
makes it easier to visualize the distribution Π|q over signal sources conditional on A(Π). Consider
a full support Π in the case of binary states and signals under the “no fake data” assumption, and
recall that a posterior q in this setting can be thought of as lying in [0, 1]. For q > 1/2, the support
of Π|q consists of those points (p00, p11) that satisfy p11

p11+1−p00
= q; one can show that this is the

line through (1, 0) and (q, q) (not including the end point at (1, 0)). Figure 4 illustrates this. Note,
however, that Π|q is not the distribution of Π conditioned on lying in this line segment. Instead,
Π|q must weight each π in this line segment by the probability that this π induces posterior q for
the source-aware learner; for example, when q > 1/2, distribution Π|q must weight each (p00, p11)
by 1

2(1− p00) +
1
2p11.

1/2

w.p. 1/2

1/3 2/3

w.p. 1/2

1/2

w.p. 1/6

0 1

w.p. 1/6

w.p. 2/3

Figure 3: Example of distribution of posteriors
induced by B(Π) and A(Π)

p00

p11

0 1

1

Π|q

Figure 4: Π|q in binary signaling schemes
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7 The Value of Many Sources in Binary Settings

7.1 Over-provisioning Theorem

Proposition 4.2 formalizes the fact that, for a fixed distribution of signaling schemes Π, source-
aware learning, A(Π), is more informative than source-blind learning, B(Π). However, our primary
interest lies in quantifying how much more informative A(Π) is than B(Π). To formalize this,
we make use of the dominance ratio P/Q of Mu et al. [2021] (recalled in Section 3.1). We study
A(Π)/B(Π), representing “how many times” A(Π) is more informative than B(Π) in large samples.
We put an analytical upper bound on the value of A(Π)/B(Π) in terms of the mean signal π = E [Π].

In this section, we focus on binary states and the two-signal, no-fake-data domain of signaling
schemes. Mu et al. [2021] restricts attention to binary states for technical reasons and defines
dominance ratio in this environment. Moreover, restricting to the domain P gives us a natural
approach to putting a meaningful upper bound on the value of sources. In Section 7.2, we discuss
the challenges to upper bounding the value of sources with finite signal realizations or without the
“no fake data” assumption.

Our approach is to use Theorem 5.1 to find the distribution of signaling schemes Π on which
source-aware learning, when compared to source-blind learning, has the largest dominance ratio.
As stated in Theorem 5.1, A(Π′) Blackwell dominates A(Π) as long as Π′ is a mean-preserving
spread of Π. Since the domain of signaling schemes P is convex, the distribution supported only
on the vertices of the triangle is a mean-preserving spread to any distribution over P . This is
formalized in the following lemma:

Lemma 7.1. For any Π ∈ ∆(P ), there exists a unique Π∗ with support only on the vertices of P
such that Π∗ is a mean-preserving spread of Π.

Proof. Consider a spread function s such that, for each point (x, y) ∈ P ⊆ R2, the distribution
s(x, y) is supported only on the vertices (1, 1), (0, 1) and (1, 0). For any (x, y), it is straightforward
to see that there exists a unique distribution s(x, y) on these vertices such that E [s(x, y)] = (x, y).
In particular, s(x, y) is the distribution over (1, 1), (0, 1) and (1, 0) with probability (x + y − 1),
(1 − x), and (1 − y), respectively. Hence, distribution Π∗ arising from applying s(·) is unique as
well.

Lemma 7.1 establishes that for any Π, there is a unique Π∗ supported on the vertices that is
a mean-preserving spread of Π. Observe that a Π∗ is uniquely identified by its mean, which gives
the weights on the vertices. Therefore, any distribution Π with the same mean signal E [Π] = π
will have the same Π∗ with E [Π∗] = π as their mean-preserving spread. With this observation, we
provide an upper bound on the dominance ratio of any distribution Π in terms of its mean signal
π = E [Π].

Lemma 7.2. For any π ∈ P , let Π∗ denote the distribution supported on the vertices of P with
E [Π∗] = π. Then, for any other distribution Π over P , we have A(Π)/B(Π) ≤ A(Π∗)/B(Π∗).

Proof. Recall the definition of the dominance ratio of A(Π) over B(Π):

A(Π)/B(Π) = sup
{m
n

: A(Π)⊗n ⪰ B(Π)⊗m
}

Since Lemma 7.1 establishes that Π∗ is the unique mean-preserving spread of any Π with the
same mean, Theorem 5.1 implies that A(Π∗) Blackwell dominates A(Π). This clearly implies that
A(Π∗)⊗n Blackwell dominates A(Π)⊗n when repeatedly drawing from the same experiment n times.
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Furthermore, we know B(Π) = B(Π∗) from Proposition 4.1 since the distributions have the same
mean. Now, for any m,n such that A(Π)⊗n ⪰ B(Π)⊗m holds, we have that

A(Π∗)⊗n ⪰ A(Π)⊗n ⪰ B(Π)⊗m = B(Π∗)⊗m

i.e., A(Π∗)⊗n ⪰ B(Π∗)⊗m also holds. We thus have that A(Π∗)/B(Π∗) ≥ A(Π)/B(Π) by definition.

Now we are ready to state our main theorem, which provides an upper bound on the value of
sources by analyzing the worst-case ratio obtained by Π∗.

Theorem 7.3 (Over-provisioning). Consider two-signal, no-fake-data signaling schemes. For any
distribution of signaling schemes Π ∈ ∆(P ) with the average signal E [Π] = (x, y), A(Π)/B(Π) is

at most log(2−x−y)

log(
√

x(1−y)+
√

y(1−x))
.

Furthermore, if the average signal is ε-away from being completely uninformative, i.e., x+ y ≥
1 + ε for some ε > 0, then A(Π)/B(Π) is at most 2 log(1−ε)

log(1−ε2)
= O(1/ε).

We use numerical simulations to check the approximate tightness of the derived bound. Recall
in Theorem 3.6, the dominance ratio is the infiumum of a possibly non-convex function. Therefore,
in Figure 5, we numerically approximate the ratio for each (x, y) pair by discretizing the domain
into a grid, evaluating the function at those grid points, and taking the minimum value as an
approximation of the infimum. On the other hand, in Figure 6, we directly evaluates the function

log(2−x−y)

log(
√

x(1−y)+
√

y(1−x))
as in the theorem. We plot the contour lines of values obtained by both

methods. The analytical bound is reasonably close to the simulated infimum, providing informal
evidence that this bound approximates the true value.

Figure 5: Simulated dominance ratio Figure 6: Analytical upper bound

Remark 7.4. The average signal quality is directly related to the maximal value one can obtain
from knowing the sources. For distributions with an average signal that is relatively away from
being uninformative, e.g. (0.75, 0.75), the maximal dominance ratio is 8. On the other hand,
for distributions with an average signal of (0.51, 0.51), the maximal dominance ratio is 200. The
intuition is that suppose an user only cares about the review made by one other person in the
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world, then it makes more sense to look for the source as opposed to read summarizations of more
data. This corresponds to the situation where the average review is close to being uninformative
to this user.

Proof of Theorem 7.3. We use Lemma 7.2 and consider the dominance ratio for distributions sup-
ported on the vertices Π∗ as an upper bound. We also use the fact that the infimum of the Rényi
ratio over t > 0 is weakly smaller than the ratio evaluated at any t. Specifically, we use t = 1

2 as it
simplifies the expression while providing a reasonably tight upper bound.

A(Π)

B(Π)
≤ A(Π∗)

B(Π∗)
= inf

θ∈{0,1},t>0

Rθ
A(Π∗)(t)

Rθ
B(Π∗)(t)

≤
Rθ

A(Π∗)(
1
2)

Rθ
B(Π∗)(

1
2)

By Proposition 4.1, B(Π∗) is equivalent to the (binary) mean signal (x, y). In binary signaling
scheme, the Rényi divergences simplifies to:

Rθ
P (t) =

1

t− 1
log

[
1∑

ω=0

(
pθω

p(1−θ)ω

)t−1

· pθω

]

When t = 1
2 , it further simplies to:

Rθ
P (1/2) = −2 log

[
1∑

ω=0

√
pθωp(1−θ)ω

]

Substituting p00 = x and p11 = y:

Rθ=0
(x,y)(1/2) = Rθ=1

(x,y)(1/2) = −2 log
[√

x(1− y) +
√

(1− x)y
]

For A(Π∗), on the other hand, the enriched signal space of P ×Ω is supported on
{
(1, 0), (0, 1),

(1, 1)
}
× {0, 1}. The probability measure over the enriched signal space under state θ is

Pθ(p, q, ω) = fΠ∗(p, q) · pθω

for (p, q) ∈
{
(1, 0), (0, 1), (1, 1)

}
and θ, ω ∈ {0, 1}, where fΠ∗ is the probability mass function

supported on the vertices (1, 0), (0, 1), and (1, 1). The Rényi divergence for A(Π∗) is calculated as
follows, where we sum over (p, q) ∈

{
(1, 0), (0, 1), (1, 1)

}
.

Rθ=0
A(Π∗)(t) =

1

t− 1
log

[∑
p,q

(
pt

(1− q)t−1
+

(1− p)t

qt−1

)
fΠ∗(p, q)

]

Rθ=1
A(Π∗)(t) =

1

t− 1
log

[∑
p,q

(
(1− q)t

pt−1
+

qt

(1− p)t−1

)
fΠ∗(p, q)

]

When t = 1
2 , this simplifies to:

Rθ=0
A(Π∗)(1/2) = Rθ=1

A(Π∗)(1/2) = −2 log

[∑
p,q

(√
p(1− q) +

√
(1− p)q

)
fΠ∗(p, q)

]

When Π∗ has mean (x, y), the weight on the supporting signaling schemes for A(Π∗) are:
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fΠ∗(1, 1) = x+ y − 1, fΠ∗(0, 1) = 1− x, and fΠ∗(1, 0) = 1− y. Substituting to the expression, we
obtain:

Rθ
A(Π∗)(1/2) = −2 log

[√
0fΠ(1, 1) +

√
1fΠ(1, 0) +

√
1fΠ(0, 1)

]
= −2 log(2− x− y)

Therefore, for any signal distribution Π with mean signal (x, y) ∈ P , A(Π)/B(Π) can be upper
bounded by the ratio of Π∗ with the same mean:

A(Π)

B(Π)
≤

Rθ
A(Π∗)(1/2)

Rθ
B(Π∗)(1/2)

=
log(2− x− y)

log(
√
x(1− y) +

√
y(1− x))

(1)

Furthermore, if we put restrictions on the mean of Π, e.g., requiring that x+ y ≥ 1+ ε, we can
get more interpretable bounds in terms of ε.

First, let us consider for the (x, y) pairs on the line x+ y = 1 + ε′ for any ε′. We want to find
which (x, y) pair on the line attains the highest dominance ratio. Substituting y = 1 + ε′ − x to
Equation 1, we obtain

A(Π)

B(Π)
≤ log(1− ε′)

log(
√
x(x− ε′) +

√
(1− x+ ε′)(1− x))

To bound the right hand side, we show that when ε′ ∈ (0, 1) and x ∈ [ϵ, 1], the logarithm
attains its maximum at x = 1+ε′

2 . We start by showing that the argument inside the logarithm is
log-concave in x. Since every concave function that is nonnegative on its domain is log-concave, we

need to verify the concavity of argument. The second order derivative of
√

x(x− ε′) is −(ε′)2

4(x2−xε′)3/2
<

0 when ε′ ∈ (0, 1) and x ∈ [ε′, 1]. By a symmetric argument, the second order derivative of√
(1− x+ ε′)(1− x) is also strictly negative in the domain. The sum of two strictly concave

functions is strictly concave. Therefore, the denominator is strictly concave in x when x ∈ [ϵ, 1]
and attains the maximum at x = 1+ε′

2 . Since the numerator log(1−ε′) < 0, the fraction also attains

maximum at x = 1+ε′

2 . This means that the dominance ratio for (x, y) along the line x+ y = 1+ ε′

is upper bounded by the dominance ratio at x = y = 1+ε′

2 .

Substituting in x = y = 1+ε′

2 to Equation 1 we obtain an upper bound in terms of ε′:

A(Π)

B(Π)
≤

Rθ
A(Π∗)(1/2)

Rθ
B(Π∗)(1/2)

=
2 log(1− ε′)

log(1− (ε′)2)
(2)

We can rewrite the function as 2
1+g(ε′) where g(ε′) = log(1+ε′)

log(1−ε′) . By quotient rule, the numerator of

the first-order derivative of g is log(1−ε′)
1+ε′ + log(1+ε′)

1−ε′ , which is strictly positive when ε′ ∈ (0, 1). Since
2

1+g(ε′) is decreasing in g(ε′), we have proved that Equation 2 is decreasing in ε′ when ε′ ∈ (0, 1).

Therefore, among the (x, y) pairs such that x+ y ≥ 1 + ε, those with x+ y = 1+ ε attains the
largest upper bound. Replacing ε′ with ε, we have that for any distribution of signaling schemes Π
with mean signal (x, y) such that x+ y ≥ 1 + ε,

A(Π)

B(Π)
≤ 2 log(1− ε)

log(1− ε2)
≈ 2

ε
(3)

Using the approximation log(1 + x) ≈ x when the absolute value of x is small, this fraction is
approximately 2

ε when ε is close to zero.
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7.2 Challenges in Extending to General Signaling Schemes

In the previous section, our restriction to the two-signal, no-fake-data signaling schemes provided
a particularly natural path forward. Under both of these conditions, there is a unique mean-
preserving spread of any arbitrary distribution Π ∈ ∆(P ) to the vertices of the space P . This
property let us define an Π∗ as the unique mean-preserving spread of Π that is supported on
the vertices. The Rényi divergences of A(Π∗) and B(Π∗) have good properties and can be upper
bounded by a simple function form.

However, when we drop either one of the assumption, i.e., if we have signaling schemes with
more than two realizations, or if the domain of binary signaling schemes has no restriction, our
approach runs into a problem: we lose the uniqueness of the mean-preserving spread supported on
the vertices. Hence, it is unclear how to approach getting a natural upper bound as Section 7.1
above. We illustrate the challenge in a few examples.

First, consider the space of binary signaling schemes without the “no-fake data” assumption.
Observe that in this domain, there are distributions Π such that A(Π) is informative, but B(Π)
is completely uninformative. For example, when Π is a uniform distribution over the bottom left
and top right corners (0, 0) and (1, 1), then A(Π) always reveals the state, but B(Π) is equivalent
to (1/2, 1/2) and is completely uninformative. In particular, the dominance ratio A(Π)/B(Π) is
unbounded.

Moreover, even when we restrict attention to when the mean signal π = E [Π] is bounded away
from uninformativeness, there is no longer a unique mean-preserving spread from Π to the vertices
of the domain. For example, the point (3/4, 3/4) could be spread to a distribution Π∗

a supported on
vertices of P , as in Section 7.1, or it could be spread to the distribution Π∗

b that puts 1/4 weight on
(0, 0) and 3/4 weight on (1, 1); the latter distribution Π∗

b would (similar to the previous paragraph)
have infinite dominance ratio and thus give no useful upper bound on the dominance ratio of Π.

Analogous problems arise when considering our problem for a larger number of states or signals.
To illustrate, consider the space of signaling schemes with two states and three signal realizations.
Since |Ω| = 3 and P = ∆(Ω) ×∆(Ω) is naturally viewed as a subspace of R6 (with dimension 4).
There are 9 vertices of this polytope, specifically:

π1 =

[
1 0 0
1 0 0

]
π2 =

[
0 1 0
1 0 0

]
π3 =

[
0 0 1
1 0 0

]
π4 =

[
1 0 0
0 1 0

]
π5 =

[
0 1 0
0 1 0

]
π6 =

[
0 0 1
0 1 0

]
π7 =

[
1 0 0
0 0 1

]
π8 =

[
0 1 0
0 0 1

]
π9 =

[
0 0 1
0 0 1

]
Each vertices represents a signaling scheme where the columns denotes the space of signal

realizations, the first row denotes P0 ∈ ∆(Ω), and the second row denotes P1 ∈ ∆(Ω). These vertices
are either perfectly uninformative for all realizations (when P0 = P1), or perfectly informative (when
P0 ̸= P1). Consider a completely uninformative signaling scheme

π =

[
1/3 1/3 1/3
1/3 1/3 1/3

]
.

This signaling scheme can be written as 1
3π1 +

1
3π5 +

1
3π9, which are three uninformative signaling

schemes. However, it can also be written as a 1
9 equal weighting of all the vertices, which contains

some informative signals. More broadly, beyond two signals and states, it is unclear how to impose
any sort of “no-fake-data” restriction which makes the above representations unique, as the signal
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realizations need not have any interpretation with regard to the states.
The above discussion shows that, without any restrictions on the space of signaling schemes,

it is unclear how to get useful bounds on the dominance ratio due to non-uniqueness and possibly
unbounded ratios. We leave further investigations in the space of general signaling schemes to
future work.

8 Conclusion

In today’s information-rich environment, economic decision-making increasingly relies on aggregat-
ing large volumes of data from diverse sources. Whether evaluating product reviews, news articles,
or medical recommendations, understanding who generates the information is crucial to judging
its reliability and relevance. Yet, modern technologies that facilitate rapid data aggregation often
obscure the origins of each data point, raising important questions about the trade-offs involved.

To address these concerns, we develop a formal framework that contrasts source-aware with
source-blind learning. We extend the classic Blackwell model of learning by repeatedly drawing
from a distribution of signaling schemes and either reveal (source-aware) or conceal (source-blind)
the realized signaling scheme to the learner.

Our analysis reveals source-aware learners benefit from increased heterogeneity among data
sources whereas source-blind learning is mean-based. Focusing on a tractable binary model, our
main result demonstrates that if the average signaling scheme is at least an ε-distance from being
completely uninformative, then a source-blind learner requires at most O(1/ε) times as much data
to match the informativeness of a source-aware learner, as measured by Blackwell dominance in
large samples.

Our findings invite further exploration into more complex settings beyond the binary framework,
as well as empirical investigations into real-world applications where the trade-off between data
volume and source information is paramount.
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